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Abstract

We introduce PeeledHuman - a novel shape represen-
tation of the human body that is robust to self-occlusions.
PeeledHuman encodes the human body as a set of Peeled
Depth and RGB maps in 2D, obtained by performing ray-
tracing on the 3D body model and extending each ray be-
yond its first intersection. This formulation allows us to
handle self-occlusions efficiently compared to other repre-
sentations. Given a monocular RGB image, we learn these
Peeled maps in an end-to-end generative adversarial fash-
ion using our novel framework - PeelGAN. We train Peel-
GAN using a 3D Chamfer loss and other 2D losses to gen-
erate multiple depth values per-pixel and a corresponding
RGB field per-vertex in a dual-branch setup. In our sim-
ple non-parametric solution, the generated Peeled Depth
maps are back-projected to 3D space to obtain a complete
textured 3D shape. The corresponding RGB maps pro-
vide vertex-level texture details. We compare our method
with current parametric and non-parametric methods in
3D reconstruction and find that we achieve state-of-the-
art-results. We demonstrate the effectiveness of our rep-
resentation on publicly available BUFF and MonoPerfCap
datasets as well as loose clothing data collected by our cal-
ibrated multi-Kinect setup.

1. Introduction
Reconstruction of a textured 3D model of the human

body from images is a pivotal problem in computer vision

and graphics. It has widespread applications in the enter-

tainment industry, e-commerce, health-care, and AR/VR

platforms. Traditional methods for 3D body reconstruction

used voxel carving, triangulation, or structured lighting ap-

proaches [6, 39] that require multi-view images captured

from calibrated setups. Recent advancements in deep learn-

ing have renewed interest in this domain with the focus on a

more challenging variant of the problem: monocular 3D re-

Peeled RGB maps

Peeled Depth maps
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View from camera

Reconstructed human mesh

Figure 1: PeeledHuman. Our proposed representation encodes a

human body as a set of Peeled Depth & RGB maps from a given

view. These maps are back-projected to 3D space in the camera

coordinate frame to recover the 3D human body.

construction, which inherently is an ill-posed problem. This

is particularly challenging as the geometry of non-rigid hu-

man shapes varies over time, yielding a large space of com-

plex articulated body poses and shape variations. Monocu-

lar reconstruction imposes several other challenges such as

self-occlusions, obstructions due to free-form clothing, and

significant viewpoint variations.

Existing deep-learning solutions for monocular 3D hu-

man reconstruction can be broadly categorized into two

classes. The first class of model-based approaches (e.g.,

[17, 24]) attempt to fit a parametric body representation, like

the SMPL [20, 26], to recover the 3D surface model. Such

model-based methods efficiently approximate the shape and

pose of the underlying naked body but fail to reconstruct

fine surface texture details of the body and the wrapped

clothing. Parametric SMPL models have been extended to

include clothing details like in [25, 2]. Another approach

by [3] predicts a UV map for every foreground pixel to gen-

erate texture over an SMPL model. However, it does not

account for large clothing deformations.

The second class of model-free approaches does not as-

sume any parametric model of the body. One set of model-

free approaches employ volumetric regression, a natural ex-
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tension of 2D convolutions, for human body recovery from

a monocular image [35, 37]. However, volumetric regres-

sion is known to be memory intensive and computation-

ally inefficient as it involves redundant 3D convolutions on

empty voxels. Additionally, this memory-intensive behav-

ior restricts the ability to learn detailed surface geometry.

The recent works in this direction include Mould-

ingNet [9], PIFu [28], and its follow-up work PIFuHD [29].

PIFu proposes a deep network that learns an implicit func-

tion to recover 3D human models under loose clothing.

More precisely, they compute local per-pixel feature vectors

on an inference image and a specified z-depth along the out-

going camera ray from each pixel to learn an implicit func-

tion that can classify whether a 3D point corresponding to

this z-depth is inside or outside the body surface. However,

this requires sampling multiple 3D points from the canoni-

cal 3D volume and testing for each of them independently.

Such sampling adds redundancy at inference time as a large

number of points inside as well as outside the 3D body sur-

face are tested. Instead, identifying the 3D points on the sur-

face is more efficient for recovering the surface geometry.

On the other hand, MouldingNet [9] proposes to recover 3D

body models by performing a pixel-wise regression of two

independent depth maps (visible and hidden). This is sim-

ilar to generating depth maps captured by two RGBD vir-

tual cameras separated by 180◦ along z-axis. Although such

pixel-wise regression is computationally more efficient as

compared to PIFu and can model arbitrary surface topology,

it still fails to handle self-occlusions. To summarize, model-

based methods cannot reconstruct highly textured clothed

subjects with arbitrary shape topologies. On the other hand,

existing model-free approaches are either computationally

intensive or unable to handle large self-occlusions.

In this paper, we tackle the problem of textured 3D hu-

man reconstruction from a single RGB image by introduc-

ing a novel shape representation, shown in Figure 1. Our

proposed solution derives inspiration from the classical ray

tracing approach in computer graphics. We estimate a fixed

number of ray intersection points with the human body sur-

face in the canonical view volume for every pixel in an

image, yielding a multi-layered shape representation called

PeeledHuman. PeeledHuman encodes a 3D shape as a set

of depth maps called hereinafter as Peeled Depth maps. We

further extend this layered representation to recover texture

by capturing a discrete sampling of the continuous surface

texture called hereinafter as Peeled RGB maps. Such a

layered representation of the body shape addresses severe

self-occlusions caused by complex body poses and view-

point variations. Our representation is similar to depth peel-
ing used in computer graphics for order-independent trans-

parency. The proposed shape representation allows us to

recover multiple 3D points that project to the same pixel in

the 2D image plane (see Figure 1), thereby overcoming the

limitation of handling self-occlusions in MouldingNet. This

solution is also more efficient than PIFu at both training and

inference time as it simultaneously (globally) predicts and

regresses to a fixed set of Peeled Depth & RGB maps for an

input monocular image. It is important to note that our rep-

resentation is not restricted only to human body models but

can generalize well to any 3D shapes/scenes, given specific

training data prior.

Thus, we reformulate the solution to the monocular tex-

tured 3D body reconstruction task as predicting a set of

Peeled Depth & RGB maps. To achieve this dual-prediction

task, we propose PeelGAN, a dual-task generative adversar-

ial network that generates a set of depth and RGB maps in

two different branches of the network, as shown in Figure 2.

These predicted peeled maps are then back-projected to 3D

space to obtain a point cloud. Similar to [40], we propose to

include Chamfer loss over the reconstructed point cloud in

the camera coordinate frame. This loss implicitly imposes a

3D body shape regularization during training. Our model is

able to hallucinate plausible parts of the body that are self-

occluded in the image. As compared to PIFu and Mould-

ingNet, PeelGAN has the advantage of being computation-

ally efficient while handling severe self-occlusions and arbi-

trary surface topology deformations caused by loose cloth-

ing. Our proposed representation enables an end-to-end,

non-parametric and differentiable solution for textured 3D

body reconstruction.

We evaluate our method with prior work on pub-

lic datasets such as BUFF [42] and MonoPerfCap [41].

MonoPerfCap consists of articulated skeletal motions and

medium-scale non-rigid surface deformations by deform-

ing a template mesh. Hence, loose clothing and large scale

non-rigid deformations are not included. On the other hand,

BUFF sequences are noisy with limited variations in shape

and clothing. To compensate for the lack of realistic 3D

datasets with large variations in shape and clothing, we

present a challenging 3D dataset captured from our cali-

brated multi-Kinect setup. It consists of 8 subjects with

large variations in loose clothing and shape (see Sec. 4.1).

We evaluate our method on all three datasets and report su-

perior quantitative and qualitative results to other state-of-

the-art methods. To summarize our contributions in this pa-

per:

• We introduce PeeledHuman - a novel shape represen-

tation of the human body encoded as a set of Peeled

Depth and RGB maps, that is robust to severe self-

occlusions.

• Our proposed representation is efficient in terms of

both encoding 3D shapes as well as feed-forward time

yielding superior quality of reconstructions with faster

inference rates.

• We propose PeelGAN - a complete end-to-end pipeline
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to reconstruct a textured 3D human body from a single

RGB image using an adversarial approach.

• We introduce a challenging 3D dataset consisting of

multiple human action sequences with variations in

shape and pose, draped in loose clothing. We intend

to release this data along with our code for academic

use.

2. Related Work
Traditionally, voxel carving and triangulation methods

were employed for recovering a 3D human body from cali-

brated multi-camera setups [8, 6]. Majority of existing deep

learning methods to recover 3D shapes from monocular

RGB images use parametric SMPL [20] model. HMR [17]

proposes to regress SMPL parameters while minimizing re-

projection loss. Segmentation masks [36] were used to fur-

ther improve the fitting of the 3D model to the available 2D

image. However, these parametric body estimation methods

yield a smooth naked mesh missing out on surface geome-

try details. Additionally, researchers have explored to incor-

porate tight clothing details over the SMPL model by esti-

mating displacements of each vertex [5, 1]. Very recently,

clothing deformation is predicted as a function of garment

size [33]. Authors in [38] estimate vertex displacements

by regressing to SMPL vertices. These techniques fail for

complex clothing topologies such as skirts and dresses.

On the other hand, model-free approaches do not use any

parametric model. Volumetric regression [35, 37, 13] uses

a voxel grid, i.e., a binary occupancy map to recover the

human body from a single RGB image. Volumetric repre-

sentations pose a serious computational disadvantage due

to the sparsity of the voxel grid and surface quality is lim-

ited to the voxel grid resolution. Deformation based ap-

proaches have been proposed over parametric models which

incorporate these details to an extent. The constraints from

body joints, silhouettes, and per-pixel shading information

are utilized in [44] to produce per-vertex movements away

from the SMPL model. However, only the visible pixels are

modeled in this approach.

To address the aforementioned issues during the recon-

struction of 3D human bodies, interest has garnered around

non-parametric approaches recently. Deep generative mod-

els have been proposed in [22] taking inspiration from the

visual hull algorithm to synthesize 2D silhouettes that are

back-projected from inferred 3D joints. The silhouettes

are back-projected to obtain clothed models with different

shape complexities. Implicit representations of 3D objects

have been employed for deep learning-based approaches

in [21, 28, 29, 18, 4, 12, 7] which represent the 3D surface

as the continuous decision boundary of a deep neural net-

work classifier. PIFu has been extended to animate implicit

representation in [14]. Unsupervised estimation of implicit

functions has been addressed in [19, 23]. Authors in [9]

represent the human body as a mould and recover visible

and hidden depth maps. Self-occlusions are not handled by

these approaches as they do not impose any human body

shape prior.

Similar to our peeled representation, multi-layer ap-

proaches have been used for 3D scene understanding. Lay-

ered Depth Images were proposed in [30] for efficient ren-

dering applications. Layer-structured 3D scene representa-

tion was proposed in [34] which performs view synthesis

as a proxy task. Recently, transformer networks were pro-

posed in [31] to transfer features to a novel view to better

recover 3D scene geometry. Nested shape layer representa-

tion was introduced in [27] to encode a 3D object efficiently.

3. Proposed Method
3.1. Peeled Representation

We encode a 3D human body model as a set of Peeled

Depth & RGB maps as follows. We assume the human body

to be a non-convex object placed in a virtual scene. Given

a virtual camera, a set of rays originating from the camera

center are traced through each pixel to the 3D world. The

set of first ray-intersections with the 3D body are recorded

as depth map d1 and RGB map r1, capturing visible sur-

face details that are nearest to the camera. Subsequently,

we peel away the occlusion and extend the rays beyond the

first bounce to hit the next intersecting surface. We succes-

sively record the corresponding depth and RGB values of

the next layer as di and ri, respectively. We consider 4 in-

tersections of each ray i.e., 4 Peeled Depth & RGB maps to

faithfully reconstruct a human body assuming this can han-

dle self-occlusions caused by the most frequent body poses.

A point cloud can be constructed from these maps using

classical camera projection methods. If the camera intrin-

sics, i.e., the focal length of camera f = [fx, fy] and its

center of axes C = [Cx, Cy] are known, then the ray direc-

tion in the camera coordinate frame corresponding to pixel

[X,Y ] is given as

ray[X,Y ] =

(
X − Cx

fx
,
Y − Cy

fy
, 1

)
. (1)

For a pixel [X,Y ] with depth dXY
1 in the first depth map, its

3D location in the camera coordinate frame is given by

⎡
⎢⎢⎢⎢⎢⎢⎣
x

y

z

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Xnorm · dXY
1

fx
Ynorm · dXY

1

fy

dXY
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2)
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Figure 2: PeelGAN overview: The dual-branch network generates Peeled Depth ( ̂D) and RGB ( ̂R) maps from an input image. The

generated maps are each fed to a discriminator: one for RGB and one for Depth maps. The generated maps are back-projected to obtain the

3D human body represented as a point cloud ( ̂P) in the camera coordinate frame. We employ a Chamfer loss between the reconstructed

point cloud and the ground-truth point cloud (P) along with several other 2D losses on the Peeled maps, as listed in Sec. 3.2.

where Xnorm = X − h/2 and Ynorm = Y − w/2. Here,

we assume [h/2, w/2] is the center of the image.

Problem Formulation Given an RGB image r1 of reso-

lution (h × w × 3) captured from an arbitrary viewpoint,

our goal is to reconstruct a textured 3D body model from n
Peeled Depth maps (D̂) and n − 1 Peeled RGB maps (R̂)

where D̂ = {d̂1, d̂2, · · · , d̂n} and R̂ = {r̂2, r̂3, · · · , r̂n−1}
respectively. The ground-truth maps are denoted as

D = {d1, d2, · · · , dn} and R = {r1, r2, · · · , rn}. A

reconstructed point cloud P̂ is obtained using Eq. 2. The

ground-truth point cloud P is used as 3D supervision in

Eq. 7. We do not generate r̂1 as the input image r1 can be

considered as the first generated RGB map. We use n = 4
maps in our method. Background pixels have depth value 0
and RGB value (255, 255, 255). They do not constitute P̂ .

For body poses with less than 4 ray intersections, d3 and d4
are 0 while r3 and r4 are equal to the background color. At

test time, only pixels with predicted non-zero depth values

are backprojected.

3.2. PeelGAN

To generate Peeled maps from an input image, we pro-

pose a conditional GAN, named PeelGAN, as depicted in

Figure 2. PeelGAN takes a single RGB image as its in-

put and generates Peeled Depth maps D̂ and corresponding

RGB maps R̂ (refer to Sec. 3.1). The input RGB image is

first fed to an encoder network (similar to [15]) consisting

of a few convolutional layers for recovering 128×128×256
feature maps and is subsequently fed to a series of 18

ResNet [11] blocks. The network uses ReLU as its activa-

tion function. We propose to decode the Peeled Depth and

RGB maps in two separate branches since they are sampled

from different distributions. The network produces 3 Peeled

RGB maps and 4 Peeled Depth maps which are then sepa-

rately fed to two different discriminators, one for each RGB

and Depth maps. We use PatchGAN discriminator as pro-

posed in [15]. We denote our generator as G, the Peeled

RGB map discriminator as Dr and the Peeled depth map

discriminator as Dd. We train our network with the follow-

ing loss function:

Lpeel = Lgan + λdepthLdepth + λrgbLrgb

+λchamLcham + λsmoothLsmooth,
(3)

where λdepth, λrgb, λcham, λsmooth are weights for depth

loss(Ldepth), RGB loss(Lrgb), Chamfer loss(Lcham) and

smoothness loss(Lsmooth) respectively. Each loss term is

explained in detail below.
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GAN Loss (Lgan) We follow the usual GAN objec-

tive for the generated R̂ and D̂ maps conditioned on the

input image r0 as

Lgan = Er0,R[logDr(r0,R)] + Er0,D[logDd(r0,D)]
+Er0 [log(1−Dr(r0, R̂))] + Er0 [log(1−Dd(r0, D̂))].

(4)

Depth Loss (Ldepth) We minimize the masked L1 loss over

ground-truth and generated peeled depth maps. γ is used as

a weighting factor to encourage prediction of self-occluded

parts appearing in d3 and d4 as

Ldepth =
4∑

i=1

∥∥∥mi · (di − d̂i)
∥∥∥
1
, (5)

where mi = γ (>1) for occluded pixels and mi = 1
otherwise.

RGB Loss (Lrgb) The generator minimizes L1 loss

between the ground-truth and generated peeled RGB maps

as

Lrgb =
4∑

i=2

∥∥∥(ri − r̂i)
∥∥∥
1
. (6)

Chamfer Loss (Lcham) To enable the network to capture

the underlying 3D structure of the generated depth maps,

we minimize Chamfer distance between the reconstructed

point cloud (P̂) and the ground-truth point cloud (P),

Lcham(P̂,P) =
∑
�pi∈ ̂P

min
�qj∈P

‖�pi − �qj‖22 +
∑
�qj∈P

min
�pi∈ ̂P

‖�qj − �pi‖22.

(7)

Chamfer loss induces 3D supervision by fusing multiple

independent 2.5D generated peel depth maps. Refer Sec.

4.5.1 for evaluation of Chamfer loss.

Smoothness Loss (Lsmooth) There is an additional

need to enforce smoothness in depth variations over the

surface (except for the boundary regions). Thus, motivated

by [32], we enforce the first derivative of generated Peeled

Depth maps to be close to that of the ground-truth Peeled

Depth maps as

Lsmooth =

4∑
i=1

∥∥∥�di −�d̂i

∥∥∥
1

(8)

4. Experiments
4.1. Datasets and Preprocessing

We perform qualitative and quantitative evaluation on

three datasets, namely (i) BUFF [42] (ii) MonoPerfCap [41]

(iii) Our new dataset. We scale each 3D body model to a

unit-box and compute 4 Peeled Depth and RGB maps from

4 different camera angles each: 0◦ (canonical view), 45◦,

60◦, 90◦.

BUFF Dataset consists of 5 subjects with tight and

loose clothing performing complex motions. The dataset

consists of 11,054 3D human body models in total. We use

this completely for testing our method.

MonoPerfCap Dataset consists of 13 daily human

motion sequences in tight and loose clothing styles. It

has approximately 40,000 3D human body models with

subjects in indoor and outdoor settings. We use two

sequences for inference and six sequences for training. One

sequence is divided equally between training and inference.

Our Data We introduce a 3D dataset consisting of

2,000 human body models from 8 human action sequences

including marching and swinging limbs using a calibrated

setup of 4 Kinect sensors. The RGBD data is back-

projected to obtain a point cloud and post-processed using

Poisson surface reconstruction to obtain the corresponding

meshes. As our data is independently reconstructed in

each frame without any template constraint, we were

able to capture realistic large scale deformations. The

dataset contains significant variations in shape and clothing

consisting of both loose and tight clothing1. We use six

sequences for training and two sequences for inference.

The dataset will be released for academic purposes to spur

further research in this field.

4.2. Training Protocol

We implement our proposed pipeline in PyTorch using 4

Nvidia GTX 1080 Ti GPUs with 11GB RAM trained for 45

epochs. A batch size of 12 is used for 512 × 512 images.

Ground-truth Peeled maps are captured using trimesh 2. We

use the Adam optimizer with a learning rate of 1.5e-4 and

γ, λdep, λcham, λrgb and λsmooth as 10, 100, 500, 500, 500,

respectively. One sequence from the MonoPerfCap dataset

was used as validation set for grid search over all hyperpa-

rameters. The final predicted point cloud contains 30000
3D body surface points on average.

4.3. Qualitative Results

We demonstrate single-view/monocular reconstruction

results on all 3 datasets in Figure 3 and Figure 4. Our

method can accurately recover the 3D human shape from

previously unseen views. Due to the nature of our encod-

ing, our method can recover the self-occluded body parts

reasonably well for severely occluded views.

1cvit.iiit.ac.in/research/projects/cvit-projects/3dcomputervision
2trimsh.org
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Figure 3: Qualitative results on MonoPerfCap (Top row), BUFF (Middle row), and Our Dataset (Bottom row). For each subject, we

show (from left to right) input image, 4 Peeled Depth and RGB maps, backprojected Peeled layers (colored according to their depth order

: red, blue, green, and yellow respectively), reconstructed textured mesh. Please refer to the supplementary material for an extended set of

results.

Figure 4: Qualitative textured reconstruction results on MonoPerfCap and BUFF datasets. For each subject, we show the input image

and multiple views of the reconstructed mesh (after performing Poisson surface reconstruction on the reconstructed point cloud). Our

proposed PeeledHuman representation efficiently reconstructs the occluded parts of the body from a single view.
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Figure 5: Qualitative comparison of HMR and PIFu with PeelGAN for MonoPerfCap, BUFF, and Our Dataset. Our method can

reconstruct plausible shapes efficiently even under severe self-occlusions.

Moulding Humans PeelGANInput

(a)

(b)

Figure 6: Qualitative comparison with (a) Moulding Humans [9]

(trained on MonoPerfCap and our dataset) (b) DeepHuman [43]

(trained on THUman dataset). Both methods fail to recover the

shape and surface texture accurately.

4.4. Comparison with Prior Work

We perform qualitative comparison of our proposed rep-

resentation with other commonly used representations for

single-view 3D human reconstruction. In particular, we

compare our method with parametric body model regres-

sion (meshes) and implicit function learning methods in

Figure 5 as well as, with voxel regression and point cloud

regression method in Figure 6. We retrain PIFu [28] using

MonoPerfCap and our dataset. We also evaluate PIFu after

finetuning the model provided by authors with MonoPerf-

Cap and our dataset. We compare with HMR [17] as a para-

metric model regression (mesh-based) method. To compare

against MouldingNet [9] in Figure 6a, we train PeelGAN

with two depth maps and our own specifications as nei-

ther code nor data was made public by the authors. For

voxel-based method, we train PeelGAN model and Dee-

pHuman [43] (predicts only textureless models) using the

released THUman dataset [43] shown in Figure 6b.

Method Chamfer Distance ↓ Image Resolution

BodyNet [35] 4.52 256

SiCloPe [22] 4.02 256

VRN [16] 2.48 256

PIFu [28] 1.14 512

Ours 1.283 256

Ours 0.9254 512
Table 1: Quantitative comparison with other methods. Our

method achieves the lowest Chamfer score for single-view recon-

struction, indicating the robustness of our representation.

As demonstrated in Figure 5, our proposed method con-

sistently recovers the underlying shape and texture. When

trained from scratch, PIFu fails to recover shape but fine-

tuning the pre-trained model (trained on commercial high-

resolution meshes) results in lesser artifacts. This empha-

sizes the necessity of high-resolution data to train implicit

function approaches. Moreover, PIFu is not end-to-end

trainable since it requires to train shape and color com-

ponents separately. HMR produces a smooth naked body

mesh missing surface texture details. MouldingNet fails to

recover body shape when there is significant self-occlusion

in the input image, as seen in Figure 6a. Our method re-

covers plausible human shapes even when it is challenging

to distinguish body parts from a single-view as shown in

Figure 6b (here hand is indistinguishable from torso due to
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Input Without With

(a)

(b)

Figure 7: (a) Reconstruction without and with Chamfer loss. Red

points indicate both noise and occluded regions that were not pre-

dicted by the network. (b) Training with smoothness loss improves

the quality of Peeled Depth maps.

textureless dark-shaded clothing).

Quantitative evaluation of our method using Chamfer

distance against PIFu, BodyNet [35], SiCloPe [22] and

VRN [16] is shown in Table 1. Here we report results on

both 512 resolution and 256 resolution inputs to have a fair

comparison with other methods. We can conclude that our

method achieves significantly lower Chamfer distance val-

ues as compare to other existing methods.

4.5. Discussion

4.5.1 Ablation Study

We perform a few ablative studies to demonstrate the ef-

fect of Chamfer and smoothness losses on the reconstruc-

tion quality of our method. Firstly, we train our network

without Chamfer loss. The network is not able to halluci-

nate the presence of occluded parts in the 3rd and 4th depth

maps and are hence missing in Figure 7a. We also observe

that absence of Chamfer loss produces significant noise in

reconstructions (red points). This can be attributed to inde-

pendent predictions of individual depth maps using L1 loss.

We also study the effect of smoothness loss (Eq. 8). This

helps the network to produce smoother depth values in lay-

ers as shown in Figure 7b. Thus, Chamfer loss forces the

network to predict plausible shapes, that are often noisy, for

the occluded parts. Smoothness loss helps the network to

smooth out these noisy depth predictions.

Figure 8: (a) Chamfer loss vs. Input image resolution (b) Chamfer

loss vs. ResNet blocks

`

(a) (b) (c) (d)

Figure 9: Performance of our method on in-the-wild images.

4.5.2 In-the-wild images

We also showcase results in Figure 9 on an in-the-wild im-

age not present in any dataset. We segment the input image

using [10] before feeding it to our model. The predicted

Peeled Depth and RGB maps are visualized in (c) and final

textured reconstruction in (d). This shows that our method

can handle wide varieties in shape, pose, and texture.

4.5.3 Effect of Input Resolution and ResNet blocks

We demonstrate the effect of ResNet blocks and input im-

age resolutions on the performance of PeelGAN in Figure

8. As we can observe, Chamfer loss decreases with an in-

crease in input image resolution. A similar trend is observed

for increasing the number of ResNet blocks. Since the im-

provement in Chamfer loss from ResNet-18 to ResNet-25

is not significant, we stick to using ResNet-18 for our ex-

periments.

5. Conclusion

We present a novel representation to reconstruct a tex-

tured human model from a single RGB image using Peeled

Depth and RGB maps. Such an encoding is robust to severe

self-occlusions while being accurate and efficient at learn-

ing & inference time. Our peeled representation miss to

capture few surface triangles that are tangential to the view-

point of the input image. However, this limitation can be

addressed with minimal post-processing when constructing

meshes from the corresponding predicted point clouds.
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